

DiffPD: Differentiable Projective Dynamics

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, Wojciech Matusik

MIT CSAIL

Simulation platforms for learning and robotics

Simulation platforms for learning and robotics

 \leq

Simulation platform

Perception and sensing

rm

Planning and control

Multi-agent collaboration

Simulation platforms for learning and robotics

DiffPD: a differentiable soft-body simulator

A simulator that unlocks interesting downstream applications.

DiffPD: a differentiable soft-body simulator

A simulator that reveals interesting mathematical insights for developing differentiable simulators (more on this later).

Related work

Soft-body simulation

Differentiable physics

Method

Consider the *i*-th step of simulation with timestep h. Input: nodal position \mathbf{x}_i and velocity \mathbf{v}_i . Output: new nodal position \mathbf{x}_{i+1} .

$$\mathbf{x}_{i+1} = \mathbf{x}_i + h\mathbf{v}_{i+1}$$
$$\mathbf{v}_{i+1} = \mathbf{v}_i + h\mathbf{M}^{-1}[-\nabla E(\mathbf{x}_{i+1}) + \mathbf{f}_{ext}]$$

Consider the *i*-th step of simulation with timestep h. Input: nodal position \mathbf{x}_i and velocity \mathbf{v}_i . Output: new nodal position \mathbf{x}_{i+1} .

$$\mathbf{x}_{i+1} = \mathbf{x}_i + h\mathbf{v}_{i+1}$$
$$\mathbf{v}_{i+1} = \mathbf{v}_i + h\mathbf{M}^{-1}[-\nabla E(\mathbf{x}_{i+1}) + \mathbf{f}_{ext}]$$

mass matrix

Consider the *i*-th step of simulation with timestep h. Input: nodal position \mathbf{x}_i and velocity \mathbf{v}_i . Output: new nodal position \mathbf{x}_{i+1} .

$$\mathbf{x}_{i+1} = \mathbf{x}_i + h\mathbf{v}_{i+1}$$
$$\mathbf{v}_{i+1} = \mathbf{v}_i + h\mathbf{M}^{-1}[-\nabla E(\mathbf{x}_{i+1}) + \mathbf{f}_{ext}]$$

hass matrix internal force from elastic energy

Consider the *i*-th step of simulation with timestep h. Input: nodal position \mathbf{x}_i and velocity \mathbf{v}_i . Output: new nodal position \mathbf{x}_{i+1} .

$$\mathbf{x}_{i+1} = \mathbf{x}_i + h\mathbf{v}_{i+1}$$
$$\mathbf{v}_{i+1} = \mathbf{v}_i + h\mathbf{M}^{-1}[-\nabla E(\mathbf{x}_{i+1}) + \mathbf{f}_{ext}]$$

mass matrix internal force from external force elastic energy

Recast it as a saddle-point problem: find $\nabla g(\mathbf{x}_{i+1}) = \mathbf{0}$ where

$$g(\mathbf{x}) \coloneqq \frac{1}{2h^2} (\mathbf{x} - \mathbf{y})^\top \mathbf{M} (\mathbf{x} - \mathbf{y}) + E(\mathbf{x})$$

Recast it as a saddle-point problem: find $\nabla g(\mathbf{x}_{i+1}) = \mathbf{0}$ where

$$g(\mathbf{x}) \coloneqq \frac{1}{2h^2} (\mathbf{x} - \mathbf{y})^\top \mathbf{M} (\mathbf{x} - \mathbf{y}) + E(\mathbf{x})$$

 $\mathbf{y} \coloneqq \mathbf{x}_i + h\mathbf{v}_i + h^2 \mathbf{M}^{-1} \mathbf{f}_{ext}$ is independent of \mathbf{x} .

Newton's method: $\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k$ where

$$\nabla^2 g(\mathbf{x}^k) \Delta \mathbf{x}^k = \nabla g(\mathbf{x}^k)$$

Bottleneck: solving the matrix $\nabla^2 g(\mathbf{x}^k)$:

$$\nabla^2 g(\mathbf{x}^k) = \frac{1}{h^2} \mathbf{M} + \nabla^2 E(\mathbf{x}^k)$$

Newton's method: $\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k$ where

$$\nabla^2 g(\mathbf{x}^k) \Delta \mathbf{x}^k = \nabla g(\mathbf{x}^k)$$

Bottleneck: solving the matrix $\nabla^2 g(\mathbf{x}^k)$:

$$\nabla^2 g(\mathbf{x}^k) = \frac{1}{h^2} \mathbf{M} + \nabla^2 E(\mathbf{x}^k)$$

requires recomputation whenever \mathbf{x}^{k} changes!

Background: differentiable simulation

Consider backpropagating loss L in the i-th step of simulation.

$$\frac{\partial L}{\partial \mathbf{y}} = \frac{\partial L}{\partial \mathbf{x}_{i+1}} \frac{\partial \mathbf{x}_{i+1}}{\partial \mathbf{y}}$$

Recall that $\nabla g(\mathbf{x}_{i+1}) = \mathbf{0}$. By differentiating it w.r.t. \mathbf{y} we have

$$\frac{\partial \mathbf{x}_{i+1}}{\partial \mathbf{y}} = \frac{1}{h^2} [\nabla^2 g(\mathbf{x}_{i+1})]^{-1} \mathbf{M}$$

Background: differentiable simulation

Putting everything together, we have $\frac{\partial L}{\partial \mathbf{y}} = \frac{1}{h^2} \mathbf{z}^{\mathsf{T}} \mathbf{M}$ where

$$\nabla^2 g(\mathbf{x}_{i+1}) \mathbf{z} = \left(\frac{\partial L}{\partial \mathbf{x}_{i+1}}\right)^{\mathsf{T}}$$

Background: differentiable simulation

Putting everything together, we have $\frac{\partial L}{\partial \mathbf{y}} = \frac{1}{h^2} \mathbf{z}^{\mathsf{T}} \mathbf{M}$ where

$$\nabla^2 g(\mathbf{x}_{i+1}) \mathbf{z} = \left(\frac{\partial L}{\partial \mathbf{x}_{i+1}}\right)^{\mathsf{T}}$$

We see that solving $abla^2 g$, again, is the bottleneck.

Recap

Insight

Forward and backward computation share the same bottleneck.

Forward simulation:
$$\nabla^2 g(\mathbf{x}^k) \Delta \mathbf{x}^k = \nabla g(\mathbf{x}^k)$$
.

Insight

Efficient solvers for forward simulation exist.

Efficient forward simulation:
$$\nabla^2 g(\mathbf{x}^k) \Delta \mathbf{x}^k = \nabla g(\mathbf{x}^k)$$
.

Backpropagation:
$$\nabla^2 g(\mathbf{x}_{i+1})\mathbf{z} = \left(\frac{\partial L}{\partial \mathbf{x}_{i+1}}\right)^{\mathsf{T}}$$
.

Insight

Can we borrow them to build efficient backpropagation solver as well?

Efficient forward simulation: $\nabla^2 g(\mathbf{x}^k) \Delta \mathbf{x}^k = \nabla g(\mathbf{x}^k)$. Efficient backpropagation: $\nabla^2 g(\mathbf{x}_{i+1}) \mathbf{z} = \left(\frac{\partial L}{\partial \mathbf{x}_{i+1}}\right)^{\mathsf{T}}$.

Consider a special class of $E = \sum_{c} E_{c}$ where

$$E_c(\mathbf{x}) \coloneqq \min_{\mathbf{p}_c \in \mathcal{M}_c} ||\mathbf{G}_c \mathbf{x} - \mathbf{p}_c||_2^2$$

Consider a special class of $E = \sum_{c} E_{c}$ where

$$\underline{E_c(\mathbf{x})} \coloneqq \min_{\mathbf{p}_c \in \mathcal{M}_c} ||\mathbf{G}_c \mathbf{x} - \mathbf{p}_c||_2^2$$

energy on each finite element

Consider a special class of $E = \sum_{c} E_{c}$ where

$$E_c(\mathbf{x}) \coloneqq \min_{\mathbf{p}_c \in \mathcal{M}_c} ||\mathbf{G}_c \mathbf{x} - \mathbf{p}_c||_2^2$$

energy on eachlocal feature, e.g.,finite elementdeformation gradient

Consider a special class of $E = \sum_{c} E_{c}$ where

$$E_c(\mathbf{x}) \coloneqq \min_{\mathbf{p}_c \in \mathcal{M}_c} ||\mathbf{G}_c \mathbf{x} - \mathbf{p}_c||_2^2$$

energy on eachlocal feature, e.g.,projection offinite elementdeformation gradientlocal feature

The saddle-point problem $\nabla g = \mathbf{0}$ is now modified accordingly:

 $\min_{\mathbf{x},\{\mathbf{p}_{c}\in\mathcal{M}_{c}\}} \tilde{g}(\mathbf{x},\{\mathbf{p}_{c}\})$

where

$$\tilde{g}(\mathbf{x}, \{\mathbf{p}_c\}) \coloneqq \frac{1}{2h^2} (\mathbf{x} - \mathbf{y})^\top \mathbf{M}(\mathbf{x} - \mathbf{y}) + \sum_c ||\mathbf{G}_c \mathbf{x} - \mathbf{p}_c||_2^2$$

The saddle-point problem $\nabla g = \mathbf{0}$ is now modified accordingly:

$$\min_{\mathbf{x},\{\mathbf{p}_c\in\mathcal{M}_c\}}\frac{1}{2h^2}(\mathbf{x}-\mathbf{y})^{\mathsf{T}}\mathbf{M}(\mathbf{x}-\mathbf{y})+\sum_c||\mathbf{G}_c\mathbf{x}-\mathbf{p}_c||_2^2$$

The saddle-point problem $\nabla g = \mathbf{0}$ is now modified accordingly:

$$\min_{\mathbf{x} \in \mathcal{I}_{c}} \frac{1}{2h^{2}} (\mathbf{x} - \mathbf{y})^{\mathsf{T}} \mathbf{M} (\mathbf{x} - \mathbf{y}) + \sum_{c} ||\mathbf{G}_{c} \mathbf{x} - \mathbf{p}_{c}||_{2}^{2}$$

The global step: fix \mathbf{p}_c and solve \mathbf{x} , constant matrix in the quadratic form and can be prefactorized.

The saddle-point problem $\nabla g = \mathbf{0}$ is now modified accordingly:

$$\min_{\mathbf{x},\{\mathbf{p}_{c}\in\mathcal{M}_{c}\}}\frac{1}{2h^{2}}(\mathbf{x}-\mathbf{y})^{\mathsf{T}}\mathbf{M}(\mathbf{x}-\mathbf{y})+\sum_{c}||\mathbf{G}_{c}\mathbf{x}-\mathbf{p}_{c}||_{2}^{2}$$

The global step: fix \mathbf{p}_c and solve \mathbf{x} , constant matrix in the quadratic form and can be prefactorized.

The local step: fix \mathbf{x} and solve \mathbf{p}_c , parallelizable among elements.

With PD, $abla^2 g$ becomes

$$\nabla^2 g(\mathbf{x}) = \frac{1}{h^2} \mathbf{M} + \sum_c \mathbf{G}_c^{\mathsf{T}} \mathbf{G}_c - \sum_c \mathbf{G}_c^{\mathsf{T}} \frac{\partial \mathbf{p}_c}{\partial \mathbf{x}}$$
$$\coloneqq \mathbf{A} - \Delta \mathbf{A}$$

With PD, $abla^2 g$ becomes

$$\nabla^2 g(\mathbf{x}) = \frac{1}{h^2} \mathbf{M} + \sum_c \mathbf{G}_c^{\mathsf{T}} \mathbf{G}_c - \sum_c \mathbf{G}_c^{\mathsf{T}} \frac{\partial \mathbf{p}_c}{\partial \mathbf{x}}$$
$$\coloneqq \mathbf{A} - \Delta \mathbf{A}$$

constant matrix and source of efficiency

With PD, $abla^2 g$ becomes

$$\nabla^2 g(\mathbf{x}) = \frac{1}{h^2} \mathbf{M} + \sum_c \mathbf{G}_c^{\mathsf{T}} \mathbf{G}_c - \sum_c \mathbf{G}_c^{\mathsf{T}} \frac{\partial \mathbf{p}_c}{\partial \mathbf{x}}$$
$$\coloneqq \mathbf{A} - \Delta \mathbf{A}$$

constant matrix andresidual that can besource of efficiencycomputed in parallel.

Recall the bottleneck:

$$\nabla^2 g(\mathbf{x}_{i+1}) \mathbf{z} = \mathbf{b} \coloneqq \left(\frac{\partial L}{\partial \mathbf{x}_{i+1}}\right)^{\mathsf{T}}$$

With $\nabla^2 g = \mathbf{A} - \Delta \mathbf{A}$ it becomes $(\mathbf{A} - \Delta \mathbf{A})\mathbf{z} = \mathbf{b}$, or $\mathbf{A}\mathbf{z} = \mathbf{b} + \Delta \mathbf{A}\mathbf{z}$

Recall the bottleneck:

$$\nabla^2 g(\mathbf{x}_{i+1}) \mathbf{z} = \mathbf{b} \coloneqq \left(\frac{\partial L}{\partial \mathbf{x}_{i+1}}\right)^{\mathsf{T}}$$

With $\nabla^2 g = \mathbf{A} - \Delta \mathbf{A}$ it becomes $(\mathbf{A} - \Delta \mathbf{A})\mathbf{z} = \mathbf{b}$, or

 $\mathbf{Az} = \mathbf{b} + \Delta \mathbf{Az}$

The global step: constant **A**, already factorized.

Recall the bottleneck:

$$\nabla^2 g(\mathbf{x}_{i+1}) \mathbf{z} = \mathbf{b} \coloneqq \left(\frac{\partial L}{\partial \mathbf{x}_{i+1}}\right)^{\mathsf{T}}$$

With $\nabla^2 g = \mathbf{A} - \Delta \mathbf{A}$ it becomes $(\mathbf{A} - \Delta \mathbf{A})\mathbf{z} = \mathbf{b}$, or

$Az = b + \Delta Az$

The global step: constant A,The local step:already factorized.parallelizable on elements.

Extension one: quasi-Newton speedup

We recall that Liu [2017] proposed a quasi-Newton approach to speed up PD even more. We can transfer it to backpropagation too.

Extension one: evaluation

Cantilever (8019 DoFs, 25 steps, 10ms timestep, no contact)

Consider the global step in PD:

 $Ax_{i+1} = right-hand side from local step.$

Efficient solvers exist for **A** with erased rows and columns:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^{\mathsf{T}})^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}(\mathbf{A}^{-1}\mathbf{v})^{\mathsf{T}}}{1 + \mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u}}$$

Let's take a look at its source of efficiency:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^{\mathsf{T}})^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}(\mathbf{A}^{-1}\mathbf{v})^{\mathsf{T}}}{1 + \mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u}}$$

Let's take a look at its source of efficiency:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^{\mathsf{T}})^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}(\mathbf{A}^{-1}\mathbf{v})^{\mathsf{T}}}{1 + \mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u}}$$

Let's take a look at its source of efficiency:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^{\mathsf{T}})^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}(\mathbf{A}^{-1}\mathbf{v})^{\mathsf{T}}}{1 + \mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u}}$$

Let's take a look at its source of efficiency:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^{\mathsf{T}})^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}(\mathbf{A}^{-1}\mathbf{v})^{\mathsf{T}}}{1 + \mathbf{v}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{u}}$$

It turns out that we can transfer this idea to backpropagation too, which DiffPD used for contact handling.

Extension two: evaluation

Rolling sphere (2469 DoFs, 100 steps, 5ms timestep, with contact)

Insight, reiterated

Efficient forward simulation solvers can be transferred to efficient backpropagation solvers!

Applications

System identification

Goal: estimating the material parameters of a plant from its motion.

Initial state optimization

Goal: optimizing time-invariant actuation to reach the target.

Open-loop control

Goal: optimizing actuation to roll forward.

Initial guess

After optimization

Closed-loop control

Goal: optimizing a neural network controller so that the starfish rises.

Real-to-sim transfer

Goal: estimating scene parameters to reconstruct the balls' motion.

User gallery: computer graphics

DiffPD are used in computational design of soft characters and cloth.

Ma et al. DiffAqua: A Differentiable Computational Design Pipeline for Soft Underwater Swimmers with Shape Interpolation. SIGGRAPH 2021 Li et al. DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact. TOG 2022

User gallery: robotics

DiffPD has also been used in modeling and controlling soft robots.

Du et al. Underwater Soft Robot Modeling and Control with Differentiable Simulation. RA-L 2021

User gallery: machine learning

DiffPD also attracts users from the learning community.

Ma et al. *RISP: Rendering-Invariant State Predictor with Differentiable Simulation and Rendering for Cross-Domain Parameter Estimation.* ICLR 2022 Nava et al. *Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models.* ICML 2022

Numerical techniques in forward simulation and backpropagation are two sides of the same coin.

Efficient forward simulation: $\nabla^2 g(\mathbf{x}^k) \Delta \mathbf{x}^k = \nabla g(\mathbf{x}^k)$. Efficient backpropagation: $\nabla^2 g(\mathbf{x}_{i+1}) \mathbf{z} = \left(\frac{\partial L}{\partial \mathbf{x}_{i+1}}\right)^{\mathsf{T}}$.

A fast, reliable differentiable soft-body simulator unlocks wide application in graphics, robotics, and machine learning.

For more information

Project http://diffpd.csail.mit.edu/

Code https://github.com/mit-gfx/diff_pd_public

This work is sponsored by DARPA FA8750-20-C-0075, IARPA 2019-19020100001, and NSF 2106962.