
Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg,
Daniela Rus, Wojciech Matusik
MIT CSAIL

DiffPD: Differentiable Projective Dynamics

Simulation platforms for learning and robotics

COMSOL Issac Gym PyBullet

Gazebo REDMAX MuJoCo

Simulation platforms for learning and robotics

Simulation
platform

Perception and sensing

Multi-agent collaboration

Planning and control

Computational design

Simulation platforms for learning and robotics

Differentiable
simulation
platform

Perception and sensing

Multi-agent collaboration

Planning and control

Computational design

DiffPD: a differentiable soft-body simulator

A simulator that unlocks interesting downstream applications.

DiffPD: a differentiable soft-body simulator

A simulator that reveals interesting mathematical insights for developing
differentiable simulators (more on this later).

𝐱𝐱𝑖𝑖 𝐱𝐱𝑖𝑖+1

Forward simulation

Backpropagation

Related work

Liu 2017Bouaziz 2014

Macklin 2020Ly 2020

Soft-body simulation Differentiable physics

Qiao 2020 Geilinger 2020

Hu 2019Hahn 2019

Method

Background: implicit time integration

Consider the 𝑖𝑖-th step of simulation with timestep ℎ.
Input: nodal position 𝐱𝐱𝑖𝑖 and velocity 𝐯𝐯𝑖𝑖.
Output: new nodal position 𝐱𝐱𝑖𝑖+1.

𝐱𝐱𝑖𝑖+1 = 𝐱𝐱𝑖𝑖 + ℎ𝐯𝐯𝑖𝑖+1
𝐯𝐯𝑖𝑖+1 = 𝐯𝐯𝑖𝑖 + ℎ𝐌𝐌−1[−𝛻𝛻𝐸𝐸 𝐱𝐱𝑖𝑖+1 + 𝐟𝐟ext]

Background: implicit time integration

Consider the 𝑖𝑖-th step of simulation with timestep ℎ.
Input: nodal position 𝐱𝐱𝑖𝑖 and velocity 𝐯𝐯𝑖𝑖.
Output: new nodal position 𝐱𝐱𝑖𝑖+1.

𝐱𝐱𝑖𝑖+1 = 𝐱𝐱𝑖𝑖 + ℎ𝐯𝐯𝑖𝑖+1
𝐯𝐯𝑖𝑖+1 = 𝐯𝐯𝑖𝑖 + ℎ𝐌𝐌−1[−𝛻𝛻𝐸𝐸 𝐱𝐱𝑖𝑖+1 + 𝐟𝐟ext]

mass matrix

Background: implicit time integration

Consider the 𝑖𝑖-th step of simulation with timestep ℎ.
Input: nodal position 𝐱𝐱𝑖𝑖 and velocity 𝐯𝐯𝑖𝑖.
Output: new nodal position 𝐱𝐱𝑖𝑖+1.

𝐱𝐱𝑖𝑖+1 = 𝐱𝐱𝑖𝑖 + ℎ𝐯𝐯𝑖𝑖+1
𝐯𝐯𝑖𝑖+1 = 𝐯𝐯𝑖𝑖 + ℎ𝐌𝐌−1[−𝛻𝛻𝐸𝐸 𝐱𝐱𝑖𝑖+1 + 𝐟𝐟ext]

mass matrix internal force from
elastic energy

Background: implicit time integration

Consider the 𝑖𝑖-th step of simulation with timestep ℎ.
Input: nodal position 𝐱𝐱𝑖𝑖 and velocity 𝐯𝐯𝑖𝑖.
Output: new nodal position 𝐱𝐱𝑖𝑖+1.

𝐱𝐱𝑖𝑖+1 = 𝐱𝐱𝑖𝑖 + ℎ𝐯𝐯𝑖𝑖+1
𝐯𝐯𝑖𝑖+1 = 𝐯𝐯𝑖𝑖 + ℎ𝐌𝐌−1[−𝛻𝛻𝐸𝐸 𝐱𝐱𝑖𝑖+1 + 𝐟𝐟ext]

mass matrix internal force from
elastic energy

external force

Background: implicit time integration

Recast it as a saddle-point problem: find 𝛻𝛻𝑔𝑔 𝐱𝐱𝑖𝑖+1 = 𝟎𝟎 where

𝑔𝑔 𝐱𝐱 ≔
1

2ℎ2
𝐱𝐱 − 𝐲𝐲 ⊤𝐌𝐌(𝐱𝐱 − 𝐲𝐲) + 𝐸𝐸(𝐱𝐱)

Background: implicit time integration

Recast it as a saddle-point problem: find 𝛻𝛻𝑔𝑔 𝐱𝐱𝑖𝑖+1 = 𝟎𝟎 where

𝑔𝑔 𝐱𝐱 ≔
1

2ℎ2
𝐱𝐱 − 𝐲𝐲 ⊤𝐌𝐌(𝐱𝐱 − 𝐲𝐲) + 𝐸𝐸(𝐱𝐱)

𝐲𝐲 ≔ 𝐱𝐱𝑖𝑖 + ℎ𝐯𝐯𝑖𝑖 + ℎ2𝐌𝐌−1𝐟𝐟ext is independent of 𝐱𝐱.

Background: implicit time integration

Newton’s method: 𝐱𝐱𝑘𝑘+1 = 𝐱𝐱𝑘𝑘 + Δ𝐱𝐱𝑘𝑘 where

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘

Bottleneck: solving the matrix 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 :

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 =
1
ℎ2
𝐌𝐌 + 𝛻𝛻2𝐸𝐸(𝐱𝐱𝑘𝑘)

Background: implicit time integration

Newton’s method: 𝐱𝐱𝑘𝑘+1 = 𝐱𝐱𝑘𝑘 + Δ𝐱𝐱𝑘𝑘 where

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘

Bottleneck: solving the matrix 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 :

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 =
1
ℎ2
𝐌𝐌 + 𝛻𝛻2𝐸𝐸(𝐱𝐱𝑘𝑘)

requires recomputation whenever 𝐱𝐱𝑘𝑘 changes!

Background: differentiable simulation

Consider backpropagating loss 𝐿𝐿 in the 𝑖𝑖-th step of simulation.

𝜕𝜕𝐿𝐿
𝜕𝜕𝐲𝐲

=
𝜕𝜕𝐿𝐿

𝜕𝜕𝐱𝐱𝑖𝑖+1
𝜕𝜕𝐱𝐱𝑖𝑖+1
𝜕𝜕𝐲𝐲

Recall that 𝛻𝛻𝑔𝑔 𝐱𝐱𝑖𝑖+1 = 𝟎𝟎. By differentiating it w.r.t. 𝐲𝐲 we have

𝜕𝜕𝐱𝐱𝑖𝑖+1
𝜕𝜕𝐲𝐲

=
1
ℎ2

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 −1𝐌𝐌

Background: differentiable simulation

Putting everything together, we have 𝜕𝜕𝜕𝜕
𝜕𝜕𝐲𝐲

= 1
ℎ2
𝐳𝐳⊤𝐌𝐌 where

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 =
𝜕𝜕𝐿𝐿

𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤

Background: differentiable simulation

Putting everything together, we have 𝜕𝜕𝜕𝜕
𝜕𝜕𝐲𝐲

= 1
ℎ2
𝐳𝐳⊤𝐌𝐌 where

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 =
𝜕𝜕𝐿𝐿

𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤

We see that solving 𝛻𝛻2𝑔𝑔, again, is the bottleneck.

Recap

𝐲𝐲 𝐱𝐱𝑖𝑖+1

Forward simulation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘 .

Backpropagation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤
.

Insight

Forward and backward computation share the same bottleneck.

𝐲𝐲 𝐱𝐱𝑖𝑖+1

Forward simulation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘 .

Backpropagation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤
.

Insight

Efficient solvers for forward simulation exist.

Efficient forward simulation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘 .

Backpropagation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤
.

Insight

Can we borrow them to build efficient backpropagation solver as well?

Efficient forward simulation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘 .

Efficient backpropagation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤
.

Simulation speedup: Projective Dynamics (PD)

Consider a special class of 𝐸𝐸 = ∑𝑐𝑐 𝐸𝐸𝑐𝑐 where

𝐸𝐸𝑐𝑐 𝐱𝐱 ≔ min
𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐

||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

Simulation speedup: Projective Dynamics (PD)

Consider a special class of 𝐸𝐸 = ∑𝑐𝑐 𝐸𝐸𝑐𝑐 where

𝐸𝐸𝑐𝑐 𝐱𝐱 ≔ min
𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐

||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

energy on each
finite element

Simulation speedup: Projective Dynamics (PD)

Consider a special class of 𝐸𝐸 = ∑𝑐𝑐 𝐸𝐸𝑐𝑐 where

𝐸𝐸𝑐𝑐 𝐱𝐱 ≔ min
𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐

||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

energy on each
finite element

local feature, e.g.,
deformation gradient

Simulation speedup: Projective Dynamics (PD)

Consider a special class of 𝐸𝐸 = ∑𝑐𝑐 𝐸𝐸𝑐𝑐 where

𝐸𝐸𝑐𝑐 𝐱𝐱 ≔ min
𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐

||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

energy on each
finite element

local feature, e.g.,
deformation gradient

projection of
local feature

Simulation speedup: Projective Dynamics (PD)

The saddle-point problem 𝛻𝛻𝑔𝑔 = 𝟎𝟎 is now modified accordingly:

min
𝐱𝐱,{𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐}

�𝑔𝑔 𝐱𝐱, 𝐩𝐩𝑐𝑐

where

�𝑔𝑔 𝐱𝐱, {𝐩𝐩𝑐𝑐} ≔
1

2ℎ2
𝐱𝐱 − 𝐲𝐲 ⊤𝐌𝐌(𝐱𝐱 − 𝐲𝐲) + �

𝑐𝑐

||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

Simulation speedup: Projective Dynamics (PD)

The saddle-point problem 𝛻𝛻𝑔𝑔 = 𝟎𝟎 is now modified accordingly:

min
𝐱𝐱,{𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐}

1
2ℎ2

𝐱𝐱 − 𝐲𝐲 ⊤𝐌𝐌(𝐱𝐱 − 𝐲𝐲) + �
𝑐𝑐

||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

Simulation speedup: Projective Dynamics (PD)

The saddle-point problem 𝛻𝛻𝑔𝑔 = 𝟎𝟎 is now modified accordingly:

min
𝐱𝐱,{𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐}

1
2ℎ2

𝐱𝐱 − 𝐲𝐲 ⊤𝐌𝐌(𝐱𝐱 − 𝐲𝐲) + �
𝑐𝑐

||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

The global step: fix 𝐩𝐩𝑐𝑐 and solve 𝐱𝐱,
constant matrix in the quadratic form
and can be prefactorized.

Simulation speedup: Projective Dynamics (PD)

The saddle-point problem 𝛻𝛻𝑔𝑔 = 𝟎𝟎 is now modified accordingly:

min
𝐱𝐱,{𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐}

1
2ℎ2

𝐱𝐱 − 𝐲𝐲 ⊤𝐌𝐌(𝐱𝐱 − 𝐲𝐲) + �
𝑐𝑐

||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

The local step: fix 𝐱𝐱 and solve 𝐩𝐩𝑐𝑐,
parallelizable among elements.

The global step: fix 𝐩𝐩𝑐𝑐 and solve 𝐱𝐱,
constant matrix in the quadratic form
and can be prefactorized.

Backpropagation speedup: DiffPD

With PD, 𝛻𝛻2𝑔𝑔 becomes

𝛻𝛻2𝑔𝑔(𝐱𝐱) =
1
ℎ2
𝐌𝐌 + �

𝑐𝑐

𝐆𝐆𝑐𝑐⊤𝐆𝐆𝑐𝑐 −�
𝑐𝑐

𝐆𝐆𝑐𝑐⊤
𝜕𝜕𝐩𝐩𝑐𝑐
𝜕𝜕𝐱𝐱

≔ 𝐀𝐀 − Δ𝐀𝐀

Backpropagation speedup: DiffPD

With PD, 𝛻𝛻2𝑔𝑔 becomes

𝛻𝛻2𝑔𝑔(𝐱𝐱) =
1
ℎ2
𝐌𝐌 + �

𝑐𝑐

𝐆𝐆𝑐𝑐⊤𝐆𝐆𝑐𝑐 −�
𝑐𝑐

𝐆𝐆𝑐𝑐⊤
𝜕𝜕𝐩𝐩𝑐𝑐
𝜕𝜕𝐱𝐱

≔ 𝐀𝐀 − Δ𝐀𝐀

constant matrix and
source of efficiency

Backpropagation speedup: DiffPD

With PD, 𝛻𝛻2𝑔𝑔 becomes

𝛻𝛻2𝑔𝑔(𝐱𝐱) =
1
ℎ2
𝐌𝐌 + �

𝑐𝑐

𝐆𝐆𝑐𝑐⊤𝐆𝐆𝑐𝑐 −�
𝑐𝑐

𝐆𝐆𝑐𝑐⊤
𝜕𝜕𝐩𝐩𝑐𝑐
𝜕𝜕𝐱𝐱

≔ 𝐀𝐀 − Δ𝐀𝐀

constant matrix and
source of efficiency

residual that can be
computed in parallel.

Backpropagation speedup: DiffPD

Recall the bottleneck:

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝐛𝐛 ≔
𝜕𝜕𝐿𝐿

𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤

With 𝛻𝛻2𝑔𝑔 = 𝐀𝐀 − Δ𝐀𝐀 it becomes (𝐀𝐀 − Δ𝐀𝐀)𝐳𝐳 = 𝐛𝐛, or

𝐀𝐀𝐳𝐳 = 𝐛𝐛 + Δ𝐀𝐀𝐳𝐳

Backpropagation speedup: DiffPD

Recall the bottleneck:

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝐛𝐛 ≔
𝜕𝜕𝐿𝐿

𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤

With 𝛻𝛻2𝑔𝑔 = 𝐀𝐀 − Δ𝐀𝐀 it becomes (𝐀𝐀 − Δ𝐀𝐀)𝐳𝐳 = 𝐛𝐛, or

𝐀𝐀𝐳𝐳 = 𝐛𝐛 + Δ𝐀𝐀𝐳𝐳
The global step: constant 𝐀𝐀,
already factorized.

Backpropagation speedup: DiffPD

Recall the bottleneck:

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝐛𝐛 ≔
𝜕𝜕𝐿𝐿

𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤

With 𝛻𝛻2𝑔𝑔 = 𝐀𝐀 − Δ𝐀𝐀 it becomes (𝐀𝐀 − Δ𝐀𝐀)𝐳𝐳 = 𝐛𝐛, or

𝐀𝐀𝐳𝐳 = 𝐛𝐛 + Δ𝐀𝐀𝐳𝐳
The global step: constant 𝐀𝐀,
already factorized.

The local step:
parallelizable on elements.

Extension one: quasi-Newton speedup

We recall that Liu [2017] proposed a quasi-Newton approach to speed
up PD even more.

Liu et al. Quasi-Newton Methods for Real-time Simulation of Hyperelastic Materials. TOG 2017

We can transfer it to backpropagation too.

Extension one: evaluation

Cantilever (8019 DoFs, 25 steps, 10ms timestep, no contact)

Extension two: boundary conditions

Consider the global step in PD:

𝐀𝐀𝐱𝐱𝑖𝑖+1 = right-hand side from local step.

Efficient solvers exist for 𝐀𝐀 with erased rows and columns:

𝐀𝐀 + 𝐮𝐮𝐯𝐯⊤ −1 = 𝐀𝐀−1 −
𝐀𝐀−1𝐮𝐮 𝐀𝐀−1𝐯𝐯 ⊤

1 + 𝐯𝐯⊤𝐀𝐀−1𝐮𝐮

Extension two: boundary conditions

Let’s take a look at its source of efficiency:

𝐀𝐀 + 𝐮𝐮𝐯𝐯⊤ −1 = 𝐀𝐀−1 −
𝐀𝐀−1𝐮𝐮 𝐀𝐀−1𝐯𝐯 ⊤

1 + 𝐯𝐯⊤𝐀𝐀−1𝐮𝐮

Extension two: boundary conditions

Let’s take a look at its source of efficiency:

𝐀𝐀 + 𝐮𝐮𝐯𝐯⊤ −1 = 𝐀𝐀−1 −
𝐀𝐀−1𝐮𝐮 𝐀𝐀−1𝐯𝐯 ⊤

1 + 𝐯𝐯⊤𝐀𝐀−1𝐮𝐮

Extension two: boundary conditions

Let’s take a look at its source of efficiency:

𝐀𝐀 + 𝐮𝐮𝐯𝐯⊤ −1 = 𝐀𝐀−1 −
𝐀𝐀−1𝐮𝐮 𝐀𝐀−1𝐯𝐯 ⊤

1 + 𝐯𝐯⊤𝐀𝐀−1𝐮𝐮

Extension two: boundary conditions

Let’s take a look at its source of efficiency:

𝐀𝐀 + 𝐮𝐮𝐯𝐯⊤ −1 = 𝐀𝐀−1 −
𝐀𝐀−1𝐮𝐮 𝐀𝐀−1𝐯𝐯 ⊤

1 + 𝐯𝐯⊤𝐀𝐀−1𝐮𝐮

It turns out that we can transfer this idea to backpropagation too, which
DiffPD used for contact handling.

Extension two: evaluation

Rolling sphere (2469 DoFs, 100 steps, 5ms timestep, with contact)

Insight, reiterated

Efficient forward simulation solvers can be transferred to efficient
backpropagation solvers!

Applications

System identification

Goal: estimating the material parameters of a plant from its motion.

Input (ground truth) After optimizationInitial guess

Initial state optimization

Goal: optimizing time-invariant actuation to reach the target.

After optimizationInitial guess

Open-loop control

Goal: optimizing actuation to roll forward.

After optimization

Initial guess

Closed-loop control

Goal: optimizing a neural network controller so that the starfish rises.

After optimizationInitial guess

Real-to-sim transfer

Goal: estimating scene parameters to reconstruct the balls’ motion.

After optimization

Initial guess

User gallery: computer graphics

DiffPD are used in computational design of soft characters and cloth.

Design of soft underwater characters
[Ma 2021]

Cloth simulation [Li 2022]

Ma et al. DiffAqua: A Differentiable Computational Design Pipeline for Soft Underwater Swimmers with Shape Interpolation. SIGGRAPH 2021
Li et al. DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact. TOG 2022

User gallery: robotics

DiffPD has also been used in modeling and controlling soft robots.

Soft robot study [Du 2021]

Du et al. Underwater Soft Robot Modeling and Control with Differentiable Simulation. RA-L 2021

User gallery: machine learning

DiffPD also attracts users from the learning community.

Building digit twins
[Ma 2022]

Training surrogate dynamic model
[Nava 2022]

Ma et al. RISP: Rendering-Invariant State Predictor with Differentiable Simulation and Rendering for Cross-Domain Parameter Estimation. ICLR 2022
Nava et al. Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models. ICML 2022

Summary

Conclusions

Numerical techniques in forward simulation and backpropagation are
two sides of the same coin.

Efficient forward simulation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘 .

Efficient backpropagation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤
.

Conclusions

A fast, reliable differentiable soft-body simulator unlocks wide
application in graphics, robotics, and machine learning.

For more information

Project
http://diffpd.csail.mit.edu/

Code
https://github.com/mit-gfx/diff_pd_public

This work is sponsored by DARPA FA8750-20-C-0075, IARPA 2019-
19020100001, and NSF 2106962.

	DiffPD: Differentiable Projective Dynamics
	Simulation platforms for learning and robotics
	Simulation platforms for learning and robotics
	Simulation platforms for learning and robotics
	DiffPD: a differentiable soft-body simulator
	DiffPD: a differentiable soft-body simulator
	Related work
	Method
	Background: implicit time integration
	Background: implicit time integration
	Background: implicit time integration
	Background: implicit time integration
	Background: implicit time integration
	Background: implicit time integration
	Background: implicit time integration
	Background: implicit time integration
	Background: differentiable simulation
	Background: differentiable simulation
	Background: differentiable simulation
	Recap
	Insight
	Insight
	Insight
	Simulation speedup: Projective Dynamics (PD)
	Simulation speedup: Projective Dynamics (PD)
	Simulation speedup: Projective Dynamics (PD)
	Simulation speedup: Projective Dynamics (PD)
	Simulation speedup: Projective Dynamics (PD)
	Simulation speedup: Projective Dynamics (PD)
	Simulation speedup: Projective Dynamics (PD)
	Simulation speedup: Projective Dynamics (PD)
	Backpropagation speedup: DiffPD
	Backpropagation speedup: DiffPD
	Backpropagation speedup: DiffPD
	Backpropagation speedup: DiffPD
	Backpropagation speedup: DiffPD
	Backpropagation speedup: DiffPD
	Extension one: quasi-Newton speedup
	Extension one: evaluation
	Extension two: boundary conditions
	Extension two: boundary conditions
	Extension two: boundary conditions
	Extension two: boundary conditions
	Extension two: boundary conditions
	Extension two: evaluation
	Insight, reiterated
	Applications
	System identification
	Initial state optimization
	Open-loop control
	Closed-loop control
	Real-to-sim transfer
	User gallery: computer graphics
	User gallery: robotics
	User gallery: machine learning
	Summary
	Conclusions
	Conclusions
	For more information

