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DiffPD: a differentiable soft-body simulator

A simulator that unlocks interesting downstream applications.



DiffPD: a differentiable soft-body simulator

A simulator that reveals interesting mathematical insights for developing 
differentiable simulators (more on this later).

𝐱𝐱𝑖𝑖 𝐱𝐱𝑖𝑖+1

Forward simulation

Backpropagation



Related work

Liu 2017Bouaziz 2014

Macklin 2020Ly 2020

Soft-body simulation Differentiable physics

Qiao 2020 Geilinger 2020

Hu 2019Hahn 2019



Method



Background: implicit time integration

Consider the 𝑖𝑖-th step of simulation with timestep ℎ.
Input: nodal position 𝐱𝐱𝑖𝑖 and velocity 𝐯𝐯𝑖𝑖.
Output: new nodal position 𝐱𝐱𝑖𝑖+1.

𝐱𝐱𝑖𝑖+1 = 𝐱𝐱𝑖𝑖 + ℎ𝐯𝐯𝑖𝑖+1
𝐯𝐯𝑖𝑖+1 = 𝐯𝐯𝑖𝑖 + ℎ𝐌𝐌−1[−𝛻𝛻𝐸𝐸 𝐱𝐱𝑖𝑖+1 + 𝐟𝐟ext]
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Background: implicit time integration

Recast it as a saddle-point problem: find 𝛻𝛻𝑔𝑔 𝐱𝐱𝑖𝑖+1 = 𝟎𝟎 where

𝑔𝑔 𝐱𝐱 ≔
1

2ℎ2
𝐱𝐱 − 𝐲𝐲 ⊤𝐌𝐌(𝐱𝐱 − 𝐲𝐲) + 𝐸𝐸(𝐱𝐱)
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𝐲𝐲 ≔ 𝐱𝐱𝑖𝑖 + ℎ𝐯𝐯𝑖𝑖 + ℎ2𝐌𝐌−1𝐟𝐟ext is independent of 𝐱𝐱.



Background: implicit time integration

Newton’s method: 𝐱𝐱𝑘𝑘+1 = 𝐱𝐱𝑘𝑘 + Δ𝐱𝐱𝑘𝑘 where

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘

Bottleneck: solving the matrix 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 :

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 =
1
ℎ2
𝐌𝐌 + 𝛻𝛻2𝐸𝐸(𝐱𝐱𝑘𝑘)
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requires recomputation whenever 𝐱𝐱𝑘𝑘 changes! 



Background: differentiable simulation

Consider backpropagating loss 𝐿𝐿 in the 𝑖𝑖-th step of simulation.

𝜕𝜕𝐿𝐿
𝜕𝜕𝐲𝐲

=
𝜕𝜕𝐿𝐿

𝜕𝜕𝐱𝐱𝑖𝑖+1
𝜕𝜕𝐱𝐱𝑖𝑖+1
𝜕𝜕𝐲𝐲

Recall that 𝛻𝛻𝑔𝑔 𝐱𝐱𝑖𝑖+1 = 𝟎𝟎. By differentiating it w.r.t. 𝐲𝐲 we have

𝜕𝜕𝐱𝐱𝑖𝑖+1
𝜕𝜕𝐲𝐲

=
1
ℎ2

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 −1𝐌𝐌



Background: differentiable simulation

Putting everything together, we have 𝜕𝜕𝜕𝜕
𝜕𝜕𝐲𝐲

= 1
ℎ2
𝐳𝐳⊤𝐌𝐌 where

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 =
𝜕𝜕𝐿𝐿

𝜕𝜕𝐱𝐱𝑖𝑖+1
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= 1
ℎ2
𝐳𝐳⊤𝐌𝐌 where

𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 =
𝜕𝜕𝐿𝐿
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⊤

We see that solving 𝛻𝛻2𝑔𝑔, again, is the bottleneck.



Recap

𝐲𝐲 𝐱𝐱𝑖𝑖+1

Forward simulation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘 .

Backpropagation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤
.



Insight

Forward and backward computation share the same bottleneck.
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Insight

Efficient solvers for forward simulation exist.

Efficient forward simulation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘 .
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Insight

Can we borrow them to build efficient backpropagation solver as well?

Efficient forward simulation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘 .

Efficient backpropagation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤
.



Simulation speedup: Projective Dynamics (PD)

Consider a special class of 𝐸𝐸 = ∑𝑐𝑐 𝐸𝐸𝑐𝑐 where

𝐸𝐸𝑐𝑐 𝐱𝐱 ≔ min
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Simulation speedup: Projective Dynamics (PD)

Consider a special class of 𝐸𝐸 = ∑𝑐𝑐 𝐸𝐸𝑐𝑐 where

𝐸𝐸𝑐𝑐 𝐱𝐱 ≔ min
𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐

||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

energy on each 
finite element



Simulation speedup: Projective Dynamics (PD)

Consider a special class of 𝐸𝐸 = ∑𝑐𝑐 𝐸𝐸𝑐𝑐 where

𝐸𝐸𝑐𝑐 𝐱𝐱 ≔ min
𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐

||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

energy on each 
finite element

local feature, e.g., 
deformation gradient



Simulation speedup: Projective Dynamics (PD)

Consider a special class of 𝐸𝐸 = ∑𝑐𝑐 𝐸𝐸𝑐𝑐 where
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Simulation speedup: Projective Dynamics (PD)

The saddle-point problem 𝛻𝛻𝑔𝑔 = 𝟎𝟎 is now modified accordingly:

min
𝐱𝐱,{𝐩𝐩𝑐𝑐∈ℳ𝑐𝑐}

�𝑔𝑔 𝐱𝐱, 𝐩𝐩𝑐𝑐

where

�𝑔𝑔 𝐱𝐱, {𝐩𝐩𝑐𝑐} ≔
1
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The global step: fix 𝐩𝐩𝑐𝑐 and solve 𝐱𝐱, 
constant matrix in the quadratic form 
and can be prefactorized.
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||𝐆𝐆𝑐𝑐𝐱𝐱 − 𝐩𝐩𝑐𝑐||22

The local step: fix 𝐱𝐱 and solve 𝐩𝐩𝑐𝑐, 
parallelizable among elements.

The global step: fix 𝐩𝐩𝑐𝑐 and solve 𝐱𝐱, 
constant matrix in the quadratic form 
and can be prefactorized.



Backpropagation speedup: DiffPD

With PD, 𝛻𝛻2𝑔𝑔 becomes

𝛻𝛻2𝑔𝑔(𝐱𝐱) =
1
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𝐌𝐌 + �
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≔ 𝐀𝐀 − Δ𝐀𝐀
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residual that can be 
computed in parallel. 



Backpropagation speedup: DiffPD

Recall the bottleneck:
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⊤
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Backpropagation speedup: DiffPD

Recall the bottleneck:
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With 𝛻𝛻2𝑔𝑔 = 𝐀𝐀 − Δ𝐀𝐀 it becomes (𝐀𝐀 − Δ𝐀𝐀)𝐳𝐳 = 𝐛𝐛, or
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The global step: constant 𝐀𝐀, 
already factorized.

The local step: 
parallelizable on elements.



Extension one: quasi-Newton speedup

We recall that Liu [2017] proposed a quasi-Newton approach to speed 
up PD even more.

Liu et al. Quasi-Newton Methods for Real-time Simulation of Hyperelastic Materials. TOG 2017

We can transfer it to backpropagation too.



Extension one: evaluation

Cantilever (8019 DoFs, 25 steps, 10ms timestep, no contact)



Extension two: boundary conditions

Consider the global step in PD:

𝐀𝐀𝐱𝐱𝑖𝑖+1 = right-hand side from local step.

Efficient solvers exist for 𝐀𝐀 with erased rows and columns: 

𝐀𝐀 + 𝐮𝐮𝐯𝐯⊤ −1 = 𝐀𝐀−1 −
𝐀𝐀−1𝐮𝐮 𝐀𝐀−1𝐯𝐯 ⊤

1 + 𝐯𝐯⊤𝐀𝐀−1𝐮𝐮
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1 + 𝐯𝐯⊤𝐀𝐀−1𝐮𝐮



Extension two: boundary conditions

Let’s take a look at its source of efficiency:

𝐀𝐀 + 𝐮𝐮𝐯𝐯⊤ −1 = 𝐀𝐀−1 −
𝐀𝐀−1𝐮𝐮 𝐀𝐀−1𝐯𝐯 ⊤

1 + 𝐯𝐯⊤𝐀𝐀−1𝐮𝐮

It turns out that we can transfer this idea to backpropagation too, which 
DiffPD used for contact handling.



Extension two: evaluation

Rolling sphere (2469 DoFs, 100 steps, 5ms timestep, with contact)



Insight, reiterated

Efficient forward simulation solvers can be transferred to efficient 
backpropagation solvers!



Applications



System identification

Goal: estimating the material parameters of a plant from its motion.

Input (ground truth) After optimizationInitial guess



Initial state optimization

Goal: optimizing time-invariant actuation to reach the target.

After optimizationInitial guess



Open-loop control

Goal: optimizing actuation to roll forward.

After optimization

Initial guess



Closed-loop control

Goal: optimizing a neural network controller so that the starfish rises.

After optimizationInitial guess



Real-to-sim transfer

Goal: estimating scene parameters to reconstruct the balls’ motion.

After optimization

Initial guess



User gallery: computer graphics

DiffPD are used in computational design of soft characters and cloth.

Design of soft underwater characters
[Ma 2021]

Cloth simulation [Li 2022]

Ma et al. DiffAqua: A Differentiable Computational Design Pipeline for Soft Underwater Swimmers with Shape Interpolation. SIGGRAPH 2021
Li et al. DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact. TOG 2022



User gallery: robotics

DiffPD has also been used in modeling and controlling soft robots. 

Soft robot study [Du 2021]

Du et al. Underwater Soft Robot Modeling and Control with Differentiable Simulation. RA-L 2021



User gallery: machine learning

DiffPD also attracts users from the learning community.

Building digit twins
[Ma 2022]

Training surrogate dynamic model
[Nava 2022]

Ma et al. RISP: Rendering-Invariant State Predictor with Differentiable Simulation and Rendering for Cross-Domain Parameter Estimation. ICLR 2022
Nava et al. Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models. ICML 2022



Summary



Conclusions

Numerical techniques in forward simulation and backpropagation are 
two sides of the same coin.

Efficient forward simulation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑘𝑘 Δ𝐱𝐱𝑘𝑘 = 𝛻𝛻𝑔𝑔 𝐱𝐱𝑘𝑘 .

Efficient backpropagation: 𝛻𝛻2𝑔𝑔 𝐱𝐱𝑖𝑖+1 𝐳𝐳 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝐱𝐱𝑖𝑖+1

⊤
.



Conclusions

A fast, reliable differentiable soft-body simulator unlocks wide 
application in graphics, robotics, and machine learning.



For more information

Project
http://diffpd.csail.mit.edu/

Code
https://github.com/mit-gfx/diff_pd_public

This work is sponsored by DARPA FA8750-20-C-0075, IARPA 2019-
19020100001, and NSF 2106962.
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